A probabilistic method for keyword retrieval in handwritten document images
نویسندگان
چکیده
Keyword retrieval in handwritten document images (word spotting) is very challenging given that OCR accuracy is not yet adequate for handwritten scripts, specially with large lexicons. Various proposed approaches build indices on information such as image features or OCR scores and have improved the performance of the traditional approach that builds index on OCR’ed text. In this paper, we improve existing keyword retrieval (word spotting) method by modeling imperfect word segmentation as probabilities and integrating the word segmentation probabilities into the word spotting algorithm. The word recognition scores are also converted into probabilities that are compatible with the probabilistic word spotting model.
منابع مشابه
Document Image Retrieval Based on Keyword Spotting Using Relevance Feedback
Keyword Spotting is a well-known method in document image retrieval. In this method, Search in document images is based on query word image. In this Paper, an approach for document image retrieval based on keyword spotting has been proposed. In proposed method, a framework using relevance feedback is presented. Relevance feedback, an interactive and efficient method is used in this paper to imp...
متن کاملPersian Handwritten Digit Recognition Using Particle Swarm Probabilistic Neural Network
Handwritten digit recognition can be categorized as a classification problem. Probabilistic Neural Network (PNN) is one of the most effective and useful classifiers, which works based on Bayesian rule. In this paper, in order to recognize Persian (Farsi) handwritten digit recognition, a combination of intelligent clustering method and PNN has been utilized. Hoda database, which includes 80000 P...
متن کاملConnected Component Based Word Spotting on Persian Handwritten image documents
Word spotting is to make searchable unindexed image documents by locating word/words in a doc-ument image, given a query word. This problem is challenging, mainly due to the large numberof word classes with very small inter-class and substantial intra-class distances. In this paper, asegmentation-based word spotting method is presented for multi-writer Persian handwritten doc-...
متن کاملCITlab ARGUS for Keyword Search in Historical Handwritten Documents - Description of CITlab's System for the ImageCLEF 2016 Handwritten Scanned Document Retrieval Task
We describe CITlab’s recognition system for the Handwritten Scanned Document Retrieval Task 2016 attached to the CLEF 2016 hold in the city of Évora in Portugal, 5-8 September 2016 (see [9]). The task is to locate positions that match a given query – consisting of possibly more than one keyword – in a number of historical handwritten documents. The core algorithms of our system are based on mul...
متن کاملKeyword spotting in unconstrained handwritten Chinese documents using contextual word model
a r t i c l e i n f o Keywords: Keyword spotting Chinese handwritten documents Word similarity Contextual word model This paper proposes a method for keyword spotting in off-line Chinese handwritten documents using a contextual word model, which measures the similarity between the query word and every candidate word in the document by combining a character classifier and the geometric context a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Pattern Recognition
دوره 42 شماره
صفحات -
تاریخ انتشار 2009